

Un nou subtipus de limfoma de cèl.lules del mantell: *"El microscopi no enganya"*

Sílvia Beà (sbea@clinic.cat)

Hospital Clínic de Barcelona/ Universitat de Barcelona IDIBAPS/ CIBERONC

Sessions SCAP "DESCOBRINT NOVES MALALTIES A PARTIR DE LA MORFOLOGIA. EL SOMNI FET REALITAT" 21 octubre 2021

Mantle Cell Lymphoma: the genesis of a concept

Lymphoytic Lymphoma, Well Differentiated

Braylan, R. C., E. S. Jaffe, et al. (1975). Pathol Annu Mann R, Jaffe ES, Berard C (1979) Am J Pathol. Lymphoytic Lymphoma, Intermediate Differentiation Lymphoytic Lymphoma, Poorly Differentiated

Mantle Cell Lymphoma: the genesis of a concept

Centrocytic

INTERMEDIATE LYMPHOCYTIC LYMPHOMA 3. No. 8 (August

Intermediate lymphocytic

EDITORIAL

Blood, Vol 78, No 2 (July 15), 1991: pp 259-263

bcl-1, t(11;14), and Mantle Cell-Derived Lymphomas

By Mark Raffeld and Elaine S. Jaffe

The American Journal of Surgical Pathology 16(7): 637-640, 1992

1992 Rayon Press, 1

Mantle Cell Lymphoma

A Proposal for Unification of Morphologic, Immunologic, and Molecular Data

MCL: diagnostic and outcome

- t(11;14) initial event (virtually all), CCND1/IGH
- overexpression of cyclin D1 protein
- cell cycle deregulation
- disruption of DNA damage response pathway
- high genomic instability
- high proliferation

(Courtesy of Dr. A. López-Guillermo)

- 3-10% of NHL
- median age at diagnosis 60yr
- 3x more common in men
- affects LN frequently, and PB, BM, spleen, GI tract
- generally aggressive clinical course
- frequent relapses
- still an incurable disease

MCL: morphological variants

Aggressive variants: Blastoid & Pleomorphic

Other variants:

most common form 80-90%

highly proliferative de novo or transformed from classic variant highly proliferative poor prognosis treatment resistance

may resemble other B-CLPD good prognosis

MCL: phenotype

MCL: the diagnostic FISH strategy

• The t(11;14) is detected by conventional cytogenetics (karyotype) only in 65%

• using a commercial <u>dual-color dual-fusion probe</u> >95% MCL show *CCND1*-IGH

• A CCND1 <u>break-apart probe</u> should be used for the few occasional MCL with CCND1 gene rearranged with IG light chains (IGK or IGL)

MCL: Mantle zone pattern WITHOUT Cyclin D1 expression

Cyclin D1-negative MCL subtype: first report

- LLMPP GEP: Overexpression of CCND2/D3
- FISH: No genetic CCND2/D3 rearrangements

• IHC: Overexpression of cyclin D2/D3 but... not specific

Cyclin D1-negative MCL: SOX11 biomarker

(Mozos, Haematologica 2009)

Cyclin D1-negative MCL: Mantle zone pattern AND Sox11+

Cyclin D1-negative MCL: Classical MCL (at diagnosis)

Cyclin D1-negative MCL: Pleomorphic MCL (at relapse)

Cyclin D1-negative MCL: genetics

Estudy of 40 Cyclin D1-neg MCL

• CCND2 rearrangement by FISH in 55% cases

Rearrangements	No. (%)
CCND1	0
CCND2	22/40 (55%)
CCND3	0
No Cyclin D gene translocation	18 (45%)

CCND2 translocation partners: frequently IG light chains

No CCND1/D2 /D3 mutations in the phosphorylation site

CCND2 fusion probes (IGH, K, L)

(Salaverria, Blood 2013)

Cyclin D1-negative MCL: Morphology and IHC

(Salaverria , Blood 2013)

Cyclin D1-negative MCL: clinico-pathological features

40 Cyclin D1-neg MCL

- SOX11+
- Male/Female ratio: 3/1
- Advanced stage (IV): 73%
- Extranodal involvement: 87%
- Leukemic involvement: 69%
- High proliferation (Ki67) has prognostic impact
- 17p/TP53 deletion has prognostic impact

(Salaverria, Blood 2013)

Cyclin D1-negative MCL: next step

•Aim: To identify other potential mechanisms driving the pathogenesis of cyclin D1-/cyclin D2- MCL (45%), especially regarding primary genetic events

Material 56 cases, MCL morphology

Gender	2.6:1
Age	65 yr
Growth pattern	45 nodular and/or diffuse
	2 mantle-zone
	70% classical
Morphology	30% blastoid
Immunophenotype	100% SOX11+
	98% CD5+
Proliferation	38% Ki67 (≥30%)
Treated	100%

<u>Methods</u>

• FISH: probes breakapart for cyclins and IG

Next-generation sequencing with FT DNA

- Mate-pair whole-genome seq T (4 cases)
- Whole-genome seq T/N (1 case)
- Whole-exome seq T (3 cases)

Molecular techniques with FFPE DNA/RNA

- Gene expression profiling (n=14)
- **qPCR**: cyclins (n=56)
- Copy-number arrays (n=42)

New cryptic IGK/L enhancer insertions near CCND3

(Martin-Garcia, Blood 2019)

mRNA expression of CCND2 and CCND3 and cryptic rearrrangements

Cryptic enhancer insertions near oncogenes: a novel mechanism alternative to reciprocal translocation

(Martin-Garcia , Blood 2019)

Global genetic landscape of Cyclin D1-negative MCL

Cyclin D1- MCL are indistinguishable from cyclin D1+ MCL

Expression: no separate cluster

Same poor overall survival, 3 yr

High genetic instability, same CNA pattern

(Martin-Garcia, Blood 2019)

Cyclin D1- MCL study overview

(Martin-Garcia , Blood 2019)

Cyclin D1- MCL: how to identify them in the real life?

MCL Crosstalk between the Microscopy and Molecular Pathology

Take-home messages: an MCL subtype identification

- The microscope won't trick you: if it seems a MCL... it may be a MCL
- Crucial contribution of Molecular Biology and Integration to diagnostic/prognostic
- Cyclin D1-neg MCL have similar clinico-biological characteristics as conventional MCL and can be recognized by <u>SOX11 expression</u>
- <u>CCND2</u> translocations are the most frequent event in cyclin D1-neg MCL
- By NGS we identified cryptic insertions of IGK enhancers near CCND3
- Up to 23% cyclin D1-neg MCL have cryptic insertions in CCND3 or CCND2
- Specific *CCND2/D3* FISH probes or high mRNA levels may be useful in the <u>differential</u> <u>diagnosis</u> of Cyclin D1-neg MCL (or NGS, OGM...)

Acknowledgements

